Bayesian Optimization: Theory and Practice Using Python -- Peng Liu
NWT
$42 $67
Discounted Shipping
Pay in 4 interest-free payments of $10.50
with .
Learn More
.
Size
Like and save for later
Add To Bundle
<p>This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.</p>The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a "develop from scratch" method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you'll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide.<p></p><p> After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you'll be able to put into practice in your own machine learning models.<br></p><br><b>What You Will Learn</b><ul><li>Apply Bayesian Optimization to build better machine learning models</li><li>Understand and research existing and new Bayesian Optimization techniques</li><li>Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working</li><li>Dig into the inn
Shipping/Discount
Trending Now
Find Similar Listings
Account is under Review
Comment posting is temporarily restricted. Our team will reach out to you shortly. To understand why, select
Learn More.










